MongoDB-CN-Manual
  • MongoDB中文手册|官方文档中文版
  • MongoDB用户手册说明
  • MongoDB简介
    • 入门
    • 数据库和集合
      • 视图
      • 按需物化视图
      • 封顶集合
      • 时间序列集合
    • 文档
    • BSON类型
      • Comparison and Sort Order
      • MongoDB Extended JSON (v2)
      • MongoDB Extended JSON (v1)
  • 安装 MongoDB
    • 安装MongoDB社区版
      • 在Linux上安装MongoDB社区版
      • 在macOS上安装MongoDB社区版
      • 在Windows上安装MongoDB社区版
    • 安装MongoDB企业版
      • 在Linux上安装MongoDB企业版
      • 在Mac OS安装MongoDB企业版
      • 在Windows安装MongoDB企业版
      • 使用Docker安装MongoDB企业版
    • 将社区版MongoDB升级到企业版MongoDB
    • 验证MongoDB软件包的完整性
  • The mongo Shell
    • 配置mongo Shell
    • 使用 mongo Shell帮助
    • 为mongo Shell编写脚本
    • mongo Shell中的数据类型
    • mongo Shell 快速参考
  • MongoDB CRUD操作
    • 插入文档
      • 插入方法
    • 查询文档
      • 在mongo Shell中迭代游标
      • 从查询返回的项目字段
      • 查询嵌入式文档数组
      • 查询数组
      • 查询空字段或缺少字段
      • 查询嵌入/嵌套文档
    • 更新文档
      • 更新方法
      • 聚合管道更新
    • 删除文档
      • 删除方法
    • 地理空间查询
      • 用地理空间查询查找餐馆
      • GeoJSON对象
    • 批量写入操作
    • 可重试写入
    • 可重试读取
    • SQL到MongoDB的映射图表
    • 文本搜索
      • 文本索引
      • 文本索引操作
      • 集合管道中的文本索引
      • 文本索引语言
    • Read Concern读关注
      • 读关注 "local"
      • 读关注 "available"
      • 读关注 "majority"
      • 读关注 "linearizable"
      • 读关注 "snapshot"
    • Write Concern写关注
    • MongoDB CRUD概念
      • 原子性和事务
      • 读隔离性,一致性和近因性
        • 因果一致性和读写关注
      • 分布式查询
      • 通过findAndModify进行线性化读取
      • 查询计划
      • 查询优化
        • 评估当前操作性能
        • 优化查询性能
        • 写操作性能
        • 说明结果
      • 分析查询表现
      • Tailable 游标
  • MongoDB聚合
    • 聚合管道
      • 聚合管道优化
      • 聚合管道限制
      • 聚合管道和分片集合
      • 使用 Zip Code 数据集进行聚合
      • 使用用户首选项数据进行聚合
    • Map-Reduce
      • Map-Reduce 和分片集合
      • Map-Reduce 并发
      • Map-Reduce 示例
      • 执行增量 Map-Reduce
      • 对 Map Function 进行故障排除
      • 排除 Reduce Function 问题
      • Map-Reduce转换到聚合管道
    • 聚合参考
      • 聚合管道快速参考
      • 聚合命令
      • 聚合命令对比
      • 聚合表达式中的变量
      • SQL 到聚合映射图表
  • MongoDB数据模型
    • 数据建模介绍
    • 模式验证
    • 数据模型设计
      • 一对一嵌套关系模型
  • MongoDB事务
  • MongoDB事务
    • 驱动程序 API
    • 生产注意事项
    • 生产注意事项 (分片集群)
    • 事务操作
  • MongoDB索引
    • 单字段索引
    • 复合索引
    • 多键索引
      • 多键索引范围
    • 文本索引
      • 为文本索引指定语言
      • 指定文本索引的名称
      • 用权重控制搜索结果
      • 限制扫描条目的数量
    • 通配符索引
      • 通配符索引限制
    • 2dsphere 索引
      • 查询一个2dsphere索引
    • 2d 索引
      • 创建一个2d索引
      • 查询一个2d索引
      • 2d索引内部
      • 使用球面几何计算距离
    • geoHaystack 索引
      • 创建Haystack索引
      • 查询Haystack索引
    • 哈希索引
    • 索引特性
      • TTL 索引
        • 通过设置TTL使集合中的数据过期
      • 唯一索引
      • 部分索引
      • 不分大小写索引
      • Sparse 索引
    • 在填充的集合上建立索引
      • 在副本集上建立滚动索引
      • 在分片群集上建立滚动索引
    • 索引交集
    • 管理索引
    • 衡量索引使用
    • 索引策略
      • 创建索引来支持查询
      • 使用索引对查询结果进行排序
      • 确保索引适合RAM
      • 创建以确保选择性的查询
    • 索引参考
  • MongoDB安全
    • 安全检查列表
    • 启用访问控制
    • 身份验证
      • 用户
        • 添加用户
        • 权限认证机制
          • SCRAM
            • 用x.509证书来认证客户端
    • 审计
      • 配置审计过滤器
      • 配置审计
      • 系统事件审计消息
    • 网络和配置强化
    • 安全参考
      • system.roles集合
      • system.users集合
      • 资源文档
      • 权限操作
    • 附录
      • 附录-A-用于测试的 OpenSSl CA 证书
      • 附录-B-用于测试的OpenSSL服务器证书
      • 附录-C-用于测试的OpenSSL客户端证书
  • Change Streams变更流
    • 变更流生产建议
    • 变更事件
  • MongoDB复制
    • 副本集成员
    • 副本集日志
    • 副本集数据同步
    • 副本集部署架构
    • 副本集成员配置教程
    • 副本集维护教程
    • MongoDB复制参考
  • MongoDB分片
    • 分片集群组件
    • 分片键
    • 哈希分片
    • 范围分片
    • 区
      • 管理分片区
      • 按位置细分数据
      • 用于更改SLA或SLO的分层硬件
      • 按应用或客户细分数据
      • 仅插入工作负载的分布式本地写入
      • 管理分片区
    • 使用块进行数据分区
      • 在分片集群中拆分数据块
    • 分片管理
      • 查看集群设置
    • 重启一个分片集群
    • [把一个分片集群迁移到不同的硬件](fen-pian/migrate-a -sharded-cluster-to-different-hardware.md)
    • 分片参考
  • MongoDB管理
    • 产品说明
    • 操作检查列表
    • 开发检查列表
    • 配置和维护
    • 性能
    • 数据中心意识
      • MongoDB部署中的工作负载隔离
      • 区
        • 管理分片区
        • 按位置细分数据
        • 用于更改SLA或SLO的分层硬件
        • 按应用或客户细分数据
        • 仅插入工作负载的分布式本地写入
        • 管理分片区
    • MongoDB备份方法
    • MongoDB监控
  • MongoDB存储
    • 存储引擎
      • WiredTiger 存储引擎
      • 内存存储引擎
    • 日志记录
      • 管理日志记录
        • GridFS
        • FAQ:MongoDB 存储
  • MongoDB参考
    • 运算符
      • 查询与映射运算符
        • 比较查询运算符
          • $eq
          • $gt
          • $gte
          • $in
          • $lt
          • $lte
          • $ne
          • $nin
        • 逻辑查询运算符
          • $and
          • $not
          • $nor
          • $or
        • 元素查询运算符
        • 评估查询运算符
        • 地理空间查询运算符
        • 数组查询运算符
        • 按位查询运算符
        • $comment
        • 映射运算符
      • 更新运算符
        • 字段更新运算符
        • 数组更新运算符
        • 按位更新运算符
      • 聚合管道阶段
      • 聚合管道操作符
        • $abs (aggregation)
        • $acos (aggregation)
        • $acosh (aggregation)
        • $add (aggregation)
        • $addToSet (aggregation)
        • $allElementsTrue (aggregation)
        • $and (aggregation)
        • $anyElementTrue (aggregation)
        • $arrayElemAt (aggregation)
        • $arrayToObject (aggregation)
        • $asin (aggregation)
        • $asinh (aggregation)
        • $atan (aggregation)
        • $atan2 (aggregation)
        • $atanh (aggregation)
        • $avg (aggregation)
        • $ceil (aggregation)
        • $cmp (aggregation)
        • $concat (aggregation)
        • $concatArrays (aggregation)
        • $cond (aggregation)
        • $convert (aggregation)
        • $cos (aggregation)
        • $dateFromParts (aggregation)
        • $dateToParts (aggregation)
        • $dateFromString (aggregation)
        • $literal (aggregation)
      • 查询修饰符
    • 数据库命令
      • 聚合命令
      • 地理空间命令
      • 查询和写操作命令
      • 查询计划缓存命令
      • 认证命令
      • 用户管理命令
      • 角色管理命令
      • 复制命令
      • 分片命令
      • 会话命令
      • 管理命令
      • 诊断命令
      • 免费监控命令
      • 系统事件审计命令
    • mongo Shell 方法
      • 集合方法
        • db.collection.aggregate()
        • db.collection.bulkWrite()
        • db.collection.copyTo()
        • db.collection.count()
        • db.collection.countDocuments()
        • db.collection.estimatedDocumentCount()
        • db.collection.createIndex()
        • db.collection.createIndexes()
        • db.collection.dataSize()
        • db.collection.deleteOne()
        • db.collection.deleteMany()
        • db.collection.distinct()
        • db.collection.drop()
        • db.collection.dropIndex()
        • db.collection.dropIndexes()
        • db.collection.ensureIndex()
        • db.collection.explain()
        • db.collection.find()
        • db.collection.findAndModify()
        • db.collection.findOne()
        • db.collection.findOneAndDelete()
        • db.collection.findOneAndReplace()
        • db.collection.findOneAndUpdate()
        • db.collection.getIndexes()
        • db.collection.getShardDistribution()
        • db.collection.getShardVersion()
        • db.collection.insert()
        • db.collection.insertOne()
        • db.collection.insertMany()
        • db.collection.isCapped()
        • db.collection.latencyStats()
        • db.collection.mapReduce()
        • db.collection.reIndex()
        • db.collection.remove()
        • db.collection.renameCollection()
        • db.collection.replaceOne()
        • db.collection.save()
        • db.collection.stats()
        • db.collection.storageSize()
        • db.collection.totalIndexSize()
        • db.collection.totalSize()
        • db.collection.update()
        • db.collection.updateOne()
        • db.collection.updateMany()
        • db.collection.watch()
        • db.collection.validate()
    • MongoDB中的限制与阈值
    • MongoDB系统集合
    • 词汇表
    • 默认的MongoDB端口
    • 默认的MongoDB读/写关注
    • 服务器会话
  • MongoDB FAQ
    • FAQ: MongoDB基础知识
    • FAQ: MongoDB索引
    • FAQ: MongoDB并发
    • FAQ: MongoDB分片
    • FAQ: MongoDB复制和副本集
    • FAQ: MongoDB存储
    • FAQ: MongoDB诊断
  • MongoDB 版本管理
  • 联系我们
    • Tapdata Cloud
    • MongoDB中文社区
    • 社区合作伙伴—锦木信息
由 GitBook 提供支持
在本页
  • 概述¶
  • 嵌套文档模式
  • 子集模式
  • 子集模式的权衡
  1. MongoDB数据模型
  2. 数据模型设计

一对一嵌套关系模型

上一页数据模型设计下一页MongoDB事务

最后更新于3年前

在本页面

这章节使用嵌套文档的模型描述了具有一对一关系的数据实体。把有关联的数据嵌套在单个文档中,可以减少读操作的次数。通常来说,如果你按嵌套文档模式来设计你的数据结构,那么在一次读取操作里,你的应用程序会接收文档所有的信息。

考虑下面 patron 和 address 映射关系的示例。这个示例说明嵌套文档优于引用:你需要在一个数据实体的内部查看另一个数据实体的信息。数据实体 patron 和 数据实体address 的关系是一对一的,一个 address 数据实体属于一个 patron 数据实体。

在标准化数据模型里,address 文档包含了 patron文档的引用。

// patron document
// patron 文档
{
   _id: "joe",
   name: "Joe Bookreader"
}

// address document
// address 文档
{
   patron_id: "joe", // reference to patron document // patron文档的引用
   street: "123 Fake Street",
   city: "Faketon",
   state: "MA",
   zip: "12345"
}

如果以引用的方式频繁读取name 和 address 的数据,那么你的应用程序需要查询多次才能获取信息。更好的方式应该把 address 实体嵌套到 patron 实体内,像下面这个示例。

{
   _id: "joe",
   name: "Joe Bookreader",
   address: {
              street: "123 Fake Street",
              city: "Faketon",
              state: "MA",
              zip: "12345"
            }
}

在嵌套文档模型里,你的应用程序查询一次就能获取 patron 的完整信息。

嵌套文档模型有一个潜在问题是:当文档包含了应用程序不需要的字段时,它会导致文档过大。这些冗余的数据会造成服务器的额外开销从而降低读的性能。相反,你可以把频繁被访问的数据子集放在单独的数据库中,以子集模式去方式去获取。

考虑一个应用会呈现电影的信息。数据库包含了一个 movie 集合,movie 的模式如下。

{
  "_id": 1,
  "title": "The Arrival of a Train",
  "year": 1896,
  "runtime": 1,
  "released": ISODate("01-25-1896"),
  "poster": "http://ia.media-imdb.com/images/M/MV5BMjEyNDk5MDYzOV5BMl5BanBnXkFtZTgwNjIxMTEwMzE@._V1_SX300.jpg",
  "plot": "A group of people are standing in a straight line along the platform of a railway station, waiting for a train, which is seen coming at some distance. When the train stops at the platform, ...",
  "fullplot": "A group of people are standing in a straight line along the platform of a railway station, waiting for a train, which is seen coming at some distance. When the train stops at the platform, the line dissolves. The doors of the railway-cars open, and people on the platform help passengers to get off.",
  "lastupdated": ISODate("2015-08-15T10:06:53"),
  "type": "movie",
  "directors": [ "Auguste Lumière", "Louis Lumière" ],
  "imdb": {
    "rating": 7.3,
    "votes": 5043,
    "id": 12
  },
  "countries": [ "France" ],
  "genres": [ "Documentary", "Short" ],
  "tomatoes": {
    "viewer": {
      "rating": 3.7,
      "numReviews": 59
    },
    "lastUpdated": ISODate("2020-01-09T00:02:53")
  }
}

目前,在展示一部电影的简介时,movie 集合包含了应用程序不需要的几个的字段,比如像 fullplot 和 rating 的值。并不是要把电影的所有的数据都存储在单个集合里,你可以把单个集合分离成两个集合:

  • movie 集合包含了一部电影的基本信息。应用程序会默认加载这个文档数据。

    // movie collection
    // movie 集合
    
    {
      "_id": 1,
      "title": "The Arrival of a Train",
      "year": 1896,
      "runtime": 1,
      "released": ISODate("1896-01-25"),
      "type": "movie",
      "directors": [ "Auguste Lumière", "Louis Lumière" ],
      "countries": [ "France" ],
      "genres": [ "Documentary", "Short" ],
    }
  • movie_details 集合包含了每部电影额外的,较少访问的数据。

    // movie_details collection
    // movie_details 集合
    
    {
      "_id": 156,
      "movie_id": 1, // reference to the movie collection
      "poster": "http://ia.media-imdb.com/images/M/MV5BMjEyNDk5MDYzOV5BMl5BanBnXkFtZTgwNjIxMTEwMzE@._V1_SX300.jpg",
      "plot": "A group of people are standing in a straight line along the platform of a railway station, waiting for a train, which is seen coming at some distance. When the train stops at the platform, ...",
      "fullplot": "A group of people are standing in a straight line along the platform of a railway station, waiting for a train, which is seen coming at some distance. When the train stops at the platform, the line dissolves. The doors of the railway-cars open, and people on the platform help passengers to get off.",
      "lastupdated": ISODate("2015-08-15T10:06:53"),
      "imdb": {
        "rating": 7.3,
        "votes": 5043,
        "id": 12
      },
      "tomatoes": {
        "viewer": {
          "rating": 3.7,
          "numReviews": 59
        },
        "lastUpdated": ISODate("2020-01-29T00:02:53")
      }
    }

这种方法提高了读取性能,因为它要求应用程序读取更少的数据来满足最常见的需求。如果需要那些较少被访问的数据,应用程序会调用其他的数据库。

提示:

当考虑在哪里分离你的数据时,在文档中频繁被访问的部分应该被分离出来,因为它会被应用程序首先加载。

另请参阅

子集模式的权衡

使用包含频繁被访问数据的小文档会减少工作集的大小。这些较小的文档集会提升了读取性能,并为应用程序提供更多内存可用。

然而,理解你的应用程序及其加载数据的方式是重要的。如果分离数据不当,你的应用程序会经常需要多次访问数据库和依赖 JOIN 操作才能获取应用程序需要的全部数据。

另外,你的数据被分离成很多个集合,会增加数据库的维护成本。因为它会使数据存储和数据查询变得困难。

译者:朱俊豪

了解如何使用子集模式到一对多关系集合模型中,参阅

原文链接:

概述
嵌套文档模式
子集模式
概述¶
嵌套文档模式
子集模式
Model One-to-Many Relationships with Embedded Documents
https://docs.mongodb.com/v4.2/tutorial/model-embedded-one-to-one-relationships-between-documents/